
Demo: Outsourcing Secure MPC to Untrusted
Cloud Environments with Correctness Verification

∗Oscar Bautista, ∗Kemal Akkaya and †Soamar Homsi
∗Dept. of Electrical and Computer Engineering

Florida International University
Miami, FL 33174

Email: {obaut004, kakkaya}@fiu.edu
†Air Force Research Laboratory, Rome. NY, U.S.A

Email: soamar.homsi@us.af.mil

Abstract—Advances in Secure Multiparty Computation (MPC)
is increasingly making this technology more attractive to solve
problems on applications involving privacy-preserving computa-
tion. Considering the plethora of MPC protocols, some perform
under a malicious security with dishonest majority attack model
such as SPDZ, which also includes an important feature that
enables the MPC nodes to verify the correctness of the com-
putation. Despite those advances, in most cases, they consider
that the computation nodes also supply the input data, which is
not a realistic assumption for many practical use cases. In this
demo, we show how our approach tackles the MPC outsourcing
problem under malicious security with dishonest majority, while
providing all the previous guarantees, namely, the verification of
the correctness of the computation in addition to confidentiality
of the inputs and outputs.

Index Terms—MPC, SMPC, SPDZ protocol, MAC checking,
client-server separation, multi-cloud environment, live demo

I. INTRODUCTION

Secure Multiparty Computation (MPC) has emerged as a
viable solution for practical applications in different domains
where the privacy of the input data is of paramount impor-
tance.

Several MPC protocols tackle this problem under a variety
of assumptions. We focus on the SPDZ protocol, which
operates under a malicious security with dishonest majority
attack model, and guarantees the privacy of the inputs with
up to n− 1 dishonest nodes. The original SPDZ protocol [1]
also uses Message Authentication Codes (MACs) to verify the
correctness of the computation. However, similarly to other
MPC protocols, it assumes that the computation nodes also
supply the input data, which does not represent many practical
applications where data suppliers and MPC nodes are different
entities.

Although this problem was tackled partially in [2], where
clients supply the input data without exposing it to the MPC
nodes and without being involved in the computation, that
approach only worked for one client, and more importantly, it
did not guarantee that the MPC nodes followed the protocol
correctly. The original verification protocol will not work in
this case, as this exposes the output to the MPC nodes before

Approved for Public Release on 13 Sep 2021; Distribution Unlimited; Case
Number: AFRL-2021-3084.

revealing it to the clients. For some applications, this may not
be desirable; moreover, they might require keeping the output
of the computation private from the MPC nodes deployed in
the untrusted cloud.

We propose an approach to fill this gap by enabling verifi-
cation of the correctness of the computation while maintaining
the same levels of assurance of the client’s data confidentiality.
We introduce a separate entity named Honest Server (HS),
which performs this verification task. This HS is different from
the powerful MPC cloud nodes in that the former is hosted
on-premises and does not require enormous computation re-
sources. After the secure computation is completed, the MPC
nodes send the shares of the results and corresponding MACs
to the HS, which reconstructs the clear text outputs and verify
their correctness. Depending on the result of the verification,
the execution aborts, or it continues with passing the results
back to the clients (or the application-dependent destination
for this data) via secure channels.

In this demonstration, we show the execution of our ap-
proach to MPC in the outsourced setting using the SPDZ pro-
tocol, including client data outsourcing, secure computation,
and aggregation of results for reconstruction, verification and
transmission back to one of the clients.

II. ARCHITECTURE

The MPC in the outsourced setting application computes
a joint function on private inputs owned by specific parties
called Clients. To preserve their privacy, those inputs are
secret-shared to the computation nodes by following an input
protocol. The demo MPC application is executed in the cloud,
as it is the case with production use cases. All parties are
connected by TCP links as shown in Fig. 1. Each component
of the test system is described here-under.

a) MPC Nodes:

The MPC nodes or MPC servers are distributed nodes
that perform the secure computation by following the SPDZ
protocol. These MPC nodes are implemented in the untrusted
cloud; for that reason, it is not desired that they get any
knowledge about the clear text input or the output of the
computation. In the outsourced setting, the MPC nodes receive



Controller

Client 1
…

Client n

MPC
node

MPC
node

Cloud

HS

MPC
node

MPC Communication
Output data

Input Data

Coordination

Fig. 1. General diagram of the setup for the demonstration.

masked inputs from the clients and send their corresponding
results’ shares to the HS. The MPC nodes are connected to
each other using TCP links that communicate messages on
rounds as the computation progresses.

b) Clients:

The client nodes provide the input data. These can be
sensors, an aggregator of data from a group of sensors, or any
other device that cannot perform the MPC directly because
it does not have enough computation power, or because it is
somehow inconvenient that such device performs the secure
computation directly (for instance, location sensors or images
captured by a swarm of drones). Therefore, they outsource
the data and the computation to the MPC nodes. In an actual
use case, clients can be geographically dispersed or form
subgroups segregated over different locations. In any case, the
clients do not communicate with each other; therefore, we can
use a single Virtual Machine (VM) and spawn several client
application instances to simulate a variable number of clients.

c) Honest Server (HS):

This server receives the shares of the outputs and verifies
the correctness of the computation using the MAC shares that
accompany each data share as defined by the SPDZ protocol.
Depending on the specific application, the results are sent back
to the clients or forwarded to the next stage in the application’s
data processing system. For instance, if the data comes from
sensors, the next stage could be a central control system that
makes decisions based on the result of the secure computation.
Note that the HS opens the output of the computation but does
not know about the input data. Additionally, the HS may or
may not aid in the generation of the preprocessed material.

For the demonstration, we are deploying the HS in the cloud
to simplify the setup and connectivity with the MPC nodes.
Additionally, we use a controller node that orchestrates the
execution of the whole MPC system, including clients and
MPC nodes.

III. IMPLEMENTATION

We modified this [3] Java application, eliminating the limita-
tion of a single client to implement the different MPC players
for our approach. In addition, we added more functionality,
such as allowing the specification of the IP addresses via
command line parameters enabling a distributed deployment
instead of running all the parties in the same host.

In general, the data that clients supply for the computation
can be images, sensor readings, or a database with different
features of many samples for a specific application. In any
case, this data needs to be converted to integers and then
masked during the execution of the input protocol that the
MPC nodes and clients run to bring this data to the MPC
nodes while preserving their privacy. For convenience, the Java
application generates input data as vector of integers whose
length is configurable via command line parameters.

Additionally, we expanded the Java application with the
creation of the HS, which involved implementing the commu-
nication between this HS and the MPC nodes and the clients.

The controller node runs a simple Python application that
establishes a connection to a predefined port setup to listen
for connections on the cloud nodes (i.e., MPC node, HS,
or clients). To start the MPC execution, the controller node
generates strings composed of the command to run the MPC
application and the corresponding command-line arguments,
including IP addresses and the input data length. Finally, these
strings are sent over the network to be executed by each player.

The type of the VMs created in GCP are e2-small which
are configured with 2 vCPUs and 2GB of memory.

IV. DEMONSTRATION

For this demonstration, we deployed 3 MPC servers, the
HS, and one additional host spawning different processes
that implement the clients on Google Cloud Platform (GCP).
Specifically, we selected a single region to deploy all players.
The resulting performance is equivalent to running the exper-
iment in a LAN environment, where all point-to-point delays
are very similar.

The whole list of experiments for the full paper included
several MPC executions varying parameters like number of
MPC servers, number of clients, and length of input data.
Nonetheless, from the execution point of view, all those are
performed in the same way. Therefore, this demonstration
focuses on the setup and preparation step by step of one
of those experiments, followed by the execution of the MPC
coordinated by the controller node.

In MPC, multiplication and addition are the basic operations
which serve as components of more complex operations.
(E.g., matrix multiplication, linear regression application for
machine learning). Therefore, for the demonstration, the MPC
system computes the multiplication of the inputs from different
clients. In this way, when 3 clients supply their private
values, the MPC servers compute the multiplication of the
3 values they provide. Furthermore, to simulate the supply of
continuous data, each client supplies a vector of values whose
elements are processed consecutively. E.g., each client supplies



(a) MPC server

(b) Honest server

Fig. 2. Extract from logs of execution of a sample secure MPC.

a vector of size n, then the output of the computation is also
a vector of size n.

The demonstration shows how the input outsourcing pre-
serves the privacy of the client’s data; it also exemplifies
through the logs of execution the correctness verification
through MAC checking as shown in Fig. 2.

The general testing procedure follows this sequence:
1) Start the different VMs; after a few seconds, we could see

the public IP addresses assigned to each of those VMs.
2) Open the file config.py located in the controller’s node

application folder and update the IP address according to
the new IP assignment.

3) At the controller node, configure the number of execu-
tions and the parameters for each run (# of servers, # of
clients, and the input data length).

4) Run the test Python application in the VMs. This applica-
tion starts listening for a connection from the controller
node, which will provide the commands for the MPC
execution.

5) Run the test application in the controller node and follow
the instructions on the screen.

6) The system will perform either a single execution or a
series of executions depending on the controller node’s
test configuration. A sample HS’s output log is shown in
Fig. 2(b).

V. CONCLUSION

Through this live demonstration we show the implemen-
tation of our proposed approach for MPC in the outsourced

setting using SPDZ protocol. In this approach, sensitive data
and computation is outsourced to powerful MPC servers
hosted in the untrusted cloud, maintaining the privacy of the
inputs and outputs while also verifying the correctness of the
secure computation.

ACKNOWLEDGEMENTS

This research was supported in part by the Air Force Re-
search Laboratory/Information Directorate’s (AFRL/RI ‘s) In-
ternship Program for summer 2021, the 2020 Summer Faculty
Fellowship Program (SFFP) through the Air Force Office of
Scientific Research (AFOSR), Contract Numbers FA8750-15-
3-6003 and FA9550-15-0001, and the U.S. National Science
Foundation, award number USNSF-1663051.

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed
or implied, of the Air Force Research Laboratory or the U.S.
Government.

REFERENCES

[1] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty compu-
tation from somewhat homomorphic encryption,” in Annual Cryptology
Conference. Springer, 2012, pp. 643–662.

[2] I. Damgård, K. Damgård, K. Nielsen, P. S. Nordholt, and T. Toft, “Confi-
dential benchmarking based on multiparty computation,” in International
Conference on Financial Cryptography and Data Security. Springer,
2016, pp. 169–187.

[3] Alexandra Institute, “FRESCO - a FRamework for Efficient Secure COm-
putation running in the outsource setting,” https://github.com/aicis/fresco-
outsourcing.


