
IDN-NetConfig: A Flexible Extension of the IDN-
Hello Protocol (ILDA Digital Network) to Control

Application Specific Parameters

Matthias Frank
University of Bonn

Institute of Computer Science 4 / Laser & Light Lab
Friedrich-Hirzebruch-Allee 8, D-53115 Bonn, Germany

matthew@cs.uni-bonn.de
http://lll.net.cs.uni-bonn.de/

Abstract —The ILDA Digital Network (IDN) is a novel protocol
family providing digital data transmission for laser projection.
While the new standards at first glance aim to replace the old
analogue signal transmission, the digital streaming concept also
enables completely new applications and flexible networked
scenarios. The IDN-Hello protocol is the basic protocol for
exchange of information between IDN enabled devices. It also
includes procedures for IDN device and service discovery as well
as exchange of laser specific parameters. Our paper presents an
extension to IDN-Hello to allow for a configuration of application
specific parameters via the local network, our so-called “IDN-
NetConfig”. The virtual demo will showcase IDN-NetConfig with
two applications for laser show data visualization.

I. INTRODUCTION TO IDN & DEMO MOTIVATION

Laser shows are widely used for entertainment purposes,
e.g. to accompany music performances. A typical laser
projector consists of a laser module and a fast-moving mirror
system, which deflects the laser beam to create shapes and
patterns either on a projection surface or in mid-air when using
artificial haze or fog. More on laser show basics in [1] and [2].

The International Laser Display Association (ILDA)
defines the de facto technical standards used in both laser show
hardware and software. Traditionally, laser projectors are
controlled with analogue input signals. The analogue ILDA
Standard Projector (ISP, [3], the 25-pin connector is also called
ISP-DB25) was the relevant specification on how to connect
laser control interfaces with laser projectors in a vendor-
independent way, which is in use for more than two decades
(technical specification of 1999).

The ILDA Digital Network (IDN) Stream Specification is a
novel standard to transmit laser show artwork in digital data
streams inside a computer network [4]. The digital processing
allows for very flexible setups as opposed to the old analogue
interfacing and cabling systems. For example, in previous work
we have already shown how an IDN software driver can
complement existing laser show software to directly generate
IDN streams [5]. These are being sent into the local network
with destination to an IDN capable laser projector or a suitable
IDN-to-analogue converter for legacy ILDA/ISP-DB25
controlled laser projectors.

Furthermore, the transmitted IDN streams can easily be
received and analyzed to help with testing and debugging of
laser show systems. The IDN-Toolbox is able to display the
received IDN stream(s) on a 2D computer screen [6]. With the
IDN-Laser-VR software, a more authentic approach on laser
show visualization from IDN streams using virtual reality (VR)
headsets is possible: Using a VR headset, the user can move
around in a virtual room with several virtual laser projectors
and watch laser show artwork generated by typical laser show
software. Even without a VR headset connected, the user will
see a 3D preview on the computer screen [7].

Another IDN specification is still work in progress: The
IDN Discovery Protocol (aka IDN-Hello) describes the
protocol for the detection, enumeration and query of IDN-
enabled devices and currently also is the basis for the IDN
Stream protocol encoding and sending IDN laser projection
data over the network. Current IDN hardware and all of our
IDN tools already support IDN-Hello unit and service
discovery in combination with IDN Stream for laser data
transport.

Furthermore, the IDN-Hello protocol will have a
mechanism and respective commands (request, response) to
allow IDN network elements (sender, receiver) to exchange
laser specific parameters. In the context of developing our IDN
visualization software (IDN-Toolbox, IDN-Laser-VR) and
lastly making them capable to be compliant to the IDN-Hello
service discovery, the idea was born to propose an extension of
the IDN-Hello protocol to allow to also control application
specific parameters of IDN receivers in a yet flexible, but
independent way of laser specific parameters that otherwise
would need to be fixed in a stable or final version of the IDN-
Hello protocol specification.

The next section of this demo paper presents all necessary
information about our proposed extension, the “IDN-
NetConfig”. Section III gives an outline of what to see at the
virtual demo and concludes the paper.

II. SUBJECT OF THE DEMO: IDN-NETCONFIG EXTIONSION

OF IDN-HELLO

Figure 1 shows a simplified architecture of a local IDN
network: The so-called IDN producers are depicted in the top

left corner, these are generating one or more IDN streams and
are sending this data via the local network to one or more IDN
consumers (receivers of the IDN stream(s)). Typically, the IDN
producer is a laser show software or some tool that is directly
generating the IDN stream data. Figure 1 shows several IDN
consumers on the right: An IDN converter that could be
attached to or integrated into a laser projector, and also the
visualization software tools IDN-Toolbox and IDN-Laser-VR.

With the IDN-Hello protocol, every IDN packet that is
being transmitted in the network starts with a 4-byte packet
header, carrying a command byte, a flags byte and a 16-bit
sequence number. All commands referring to IDN Stream and
real-time laser data transmission are using a value of 0x40
(hexadecimal) or subsequent (as of the current draft
specification 0x41, 0x44, 0x45, 0x47).

The commands for unit discovery are 0x10 scanning the
network for IDN units using a local broadcast and 0x11 for the
(unicast) response with unit identification and status. As a
follow-up step with command 0x12 an IDN producer can ask
the IDN consumer for available IDN services. This is a
separate step as a single IDN consumer unit can offer several
IDN services. The reply is command 0x13 with a map of
supported services, which has a dynamic size consisting of
several service map entries.

Figure 1. IDN network architecture, incl. IDN-NetConfig elements.

For the exchange of laser specific parameters, currently the
command values 0x20 to 0x29 are reserved, allowing for
request and response of service, unit or link specific
parameters. Details for the concept and procedures are still to
be finalized (and are not yet implemented in existing IDN
producer/consumer software or hardware).

For our proposed extension for control of application
specific parameters we are using specific new command values
of the IDN-Hello packet header. It has been negotiated that the
IDN-Hello specification will reserve command values 0xC0
and higher (up to 0xFF) for vendor specific use cases.

Figure 1 also shows our specific use cases: The IDN-
Toolbox (red mark “(4)…” and IDN-Laser-VR (red mark
“(3)…”) are individual examples for IDN consumer software
that can benefit from the capability of controlling specific
application parameters remotely via the network instead of
controlling these parameters in the instance of the application
itself (e.g. via an appropriate graphical user interface, GUI).
The red marks “(1)” and “(2)” in Figure 1 are placeholders for
an Android App and a Qt based software with GUIs to control

those application specific parameters independently of the IDN
producers of the IDN laser streams.

The vendor specific IDN-Hello command 0xF1 with a local
broadcast (same as for unit scan 0x10) is used to scan the
network for IDN-NetConfig enabled units. Only these will
respond with the command 0xF2. Now those units are able to
receive command 0xF0, which is used to set a specific
parameter of the application to a certain value.

For ease of implementation and debugging, the 0xF0
command contains the usual 4-byte IDN-Hello packet header, a
parameter keyword (as 16-byte string) and the parameter value
(as 20-byte string). This looks inefficient in terms of number of
bytes used in the payload, but as the frequency of parameter
changes is dominated by actions of a human user using a
software/GUI like (1) or (2) (cf. Figure 1), the total amount of
updates/changes per time interval and thus the generated
amount of network traffic is negligible.

Sender and receiver software can make use of prominent
programming functions of formatted printing to and reading
from strings (sprintf() and sscanf()), the definition and
use of keywords is not limited at all (just the length of 16 chars)
and it is easy to debug the payload content with network
analysis tools like Wireshark.

Figure 2. Android App for the IDN-NetConfig controller, (left) for IDN-
Toolbox, (right) for IDN-Laser-VR.

Figure 2 shows screenshots of the Android IDN-NetConfig
controller App with typical application specific parameters for
IDN-Toolbox (left) and IDN-Laser-VR (right). E.g. the
parameter “lineWidth” is used in both applications and controls
the thickness of lines for visualizing the laser graphic drawing
in the visualization software. Other parameters are unique for
each application. Due to space limitations of this paper, these
parameters will be showcased and explained in more detail
only in the virtual demo.

The IDN-NetConfig Android App is designed to be fully
configurable concerning the keyword strings and allows to use
Boolean type (values true and false) or unsigned integer with a
selectable value range. For both types, the GUI uniformly uses
a slider to allow the user to change the parameter values. Figure

3 (right) shows the Android App in configuration mode: An
arbitrary number of parameters with type and value range
maybe configured, the order of appearance maybe changed and
a parameter preset maybe stored, e.g. Figure 2 (left) vs. (right).

Figure 3. Flexible selection of arbitrary parameters, (left) in Qt GUI,
(right) in Android App.

Figure 3 (left) shows the GUI of a Qt based version of the
IDN-NetConfig controller. The major set of parameters of the
IDN-Toolbox is hard-coded with GUI elements like
checkboxes (Boolean) and sliders (e.g. again “Line Width”).
The bottom part shows six sliders that can be used to control
arbitrary parameters (Boolean; integer with selectable value
range) by typing the appropriate keyword string into the “Key”
text fields.

The receiving side of IDN-NetConfig as a software library
within the IDN consumer application is storing all incoming
keyword – value pairs in a dynamic list and is remembering
only the latest value for each parameter. The specific
application can query the IDN-NetConfig library and can look
up the value string for a specific parameter keyword.

III. WHAT TO SEE AT THE DEMO & CONCLUSION

In the virtual demo the participants will be able to see a set
of IDN consumer applications with IDN-NetConfig extension
from the Laser & Light Lab of the University of Bonn, via
screen sharing, camera scene composition or a combination of
both. A suitable IDN producer will create IDN streams with
laser projection data in a loop, while the IDN-NetConfig
controller software (both Qt based and Android App) will be
showcased to change those application specific parameters of
the IDN-Toolbox and the IDN-Laser-VR. The best motivation
for network based control of these parameters will be visible
with the IDN-Toolbox in the so called full-screen mode, where
the software has no own GUI elements for control of any
parameters and is able to be operated on a computer even
without human interface devices as keyboard or mouse.

To conclude, in general the IDN-NetConfig concept can be
considered as a blue print for other application specific use
cases with IDN consumers. The IDN-Toolbox and IDN-Laser-
VR use a common software library for decoding the content of
IDN stream messages that is also implementing the receiving
side of IDN-NetConfig. This library is able to be re-used by
other software, using their own application specific parameters

and polling values from the library with appropriate keyword
strings. The IDN-NetConfig controller software in both Qt
version and in particular Android App are already flexible to
configure individual keyword strings and select Boolean or
signed integer type.

Currently, our IDN-NetConfig implementation only
supports unicast transmission of keyword – value pairs towards
the IDN consumer (command 0xF0). This could be extended
by also requesting feedback from the IDN consumer (request
response cycle) or even enabling the IDN consumer itself to
request some information from the IDN-NetConfig controller
source. A possible use case for this might be a mutual
authentication of IDN producer and consumer before starting
IDN stream transmission, activation of application specific
encryption of IDN stream content with prior key exchange, or
similar handshaking or configuration purposes that are
independent of the laser specific encoding of data and other
laser specific parameters.

It is planned to publish a video of the IDN-NetConfig
demonstration in the YouTube channel of the Laser & Light
Lab of Uni Bonn [8] and to release the existing software of our
current IDN-NetConfig implementation in a public gitlab
repository [9].

Acknowledgement: The work on the IDN-NetConfig
concept started in a Computer Science Bachelor project course
in joint activity by Georg Kuhlemann und Sebastian Tasch in
2020. In their Bachelor Theses, Georg completed the IDN-
NetConfig elements in Qt and within the IDN-Toolbox, and
Sebastian developed the Android App und provided IDN-
NetConfig support in the IDN-Laser-VR software, all in 2021.

REFERENCES
[1] Laser F/X International. How Laser Shows Work - Introduction,

https://laserfx.com/Works/IndexWorks.html (last accessed Sept. 28,
2021)

[2] Michael Roberts, Richard Gonsalves. Laser F/X: The Light Show
Handbook (Mark II), R.A.G.e. Media, July 2021

[3] ILDA, ILDA Technical Standards – International Laser Display
Association, Orlando/Florida, USA, https://www.ilda.com/technical.htm
(last accessed Sept. 28, 2021)

[4] Matthias Frank, Horacio Pugliese, Andrew Berry, Tim Walsh, and Dirk
Apitz. The ILDA Digital Network Stream Specification. International
Laser Display Association, Tech. Rep. Revision 001, 2015

[5] Matthias Frank, A Multi-Platform Library for a Software Sender for the
(proposed) ILDA Digital Network, Demo/International Conference on
Networked Systems, NetSys 2015, Cottbus, March 2015

[6] Matthias Frank. Demonstration of “IDN-Toolbox”: A Software to
Visualize and Analyze IDN (ILDA Digital Network) Streams.
Demonstrations of the 42nd IEEE Conference on Local Computer
Networks (LCN), 2017

[7] Matthias Frank, Fabian Marquardt. IDN-Laser-VR: A Demonstration of
Real-Time Multimedia Streaming in Local Networks Using the ILDA
Digital Network Protocol. Demonstrations of the 44th IEEE Conference
on Local Computer Networks (LCN), 2019

[8] Laser & Light Lab University of Bonn YouTube channel
https://www.youtube.com/channel/UCHTP9mmi3p3Yri4faX8zyTw
(last accessed Sept. 28, 2021)

[9] Laser & Light Lab University of Bonn gitlab Repository. Several IDN
related projects. https://gitlab.com/laser_light_lab_uni_bonn/ (last
accessed Sept. 28, 2021)

