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Abstract—Distributed Denial-of-Service (DDoS) attacks remain
a notorious threat to businesses and governments. As defense
mechanisms and investments therein were extended, the dynamics
of attacks have adapted accordingly. Not only have attacks gained
in frequency and size, but the underlying attack vectors have also
evolved. Thus, there is a need for capable tooling that allows
researchers, operators, and decision-makers to obtain insights
into the behavioral aspects of attacks and their impacts. Such
tooling needs to be able to keep up with the dynamic nature
and with strong scalability requirements. In this demonstration,
the SecGrid platform is introduced to facilitate traffic analysis
and visualization of volumetric data. Using the SecGrid’s engine,
a range of applications from behavioral visualization, impact
estimation, or ML-based attack classification are enabled.

Index Terms—Cybersecurity, Network Traffic Analysis, Cyber-
attacks Identification, Information Visualization

I. INTRODUCTION

Forecasts on the state of Distributed Denial-of-Service
(DDoS) attacks in 2021 have proven to be true, as mitigation
service providers continue to reveal a highly active threat
landscape. The danger presented by attacks that are evolving in
scale, frequency, and complexity has led to increased adoption
of mitigation tools and services [1].

To mitigate such attacks, various types of users need to be
able to understand the characteristics at hand [2]. For example,
while business decision-makers seek to understand the abstract
implications of an attack, researchers wish to obtain a low-
level view on an attack to discover patterns of an attack vector.

With that background, captured network traffic is a promis-
ing data source that can be used to analyze attacks. Besides
capturing information in the form of logs directly from a
host or application, flow capturing and packet capturing are
prominent approaches [3].

While the flow-based data structure makes the approach
preferable for the operation of high-speed networks, it lacks
important data to be analyzed. Packet captures, on the other
hand, provide full information on the traffic exchanged [4].

In order to gain insights from captured traffic, a plethora of
software from industry and academia exists. However, many
of these implementations are either not scalable to analyze
volumetric attack traffic (e.g., WireShark and tshark) or they
are highly complex (e.g., Hadoop and ELK stack) and require
substantial investments in personnel and infrastructure. For
example, all of these approaches do not expose simple to

use visualizations targeting cyberattacks. Thus, the mapping
process from packet data to useful insight is often left to the
user

The SecGrid platform [5] contributes to addressing this
issue by implementing an extensible approach to analyze
network traffic with appropriate scalability and usability. Also,
this enables a collaborative setting to share insights from
volumetric network traffic. Based on that, insights can be
created with a flexible implementation that allows additional
approaches to be built on the top of the SecGrid, such as
ML-based classifiers and useful visualizations to understand
cyberattacks behaviors.

II. SYSTEM’S OVERVIEW

The SecGrid platform implements an automated traffic
analysis process that is scalable to enable large-scale analysis.
Since information sharing in a post-mortem setting is a key use
case, the usability requirement for a number of stakeholders
must be emphasized.

To enable users to create insights using any dimension of
network traffic, the PCAP file format was used as primary
input data. Providing a scalable solution on top of commodity
hardware (i.e., without the usage of specialized hardware or
cloud environments) dictates a strict flow of data. Therefore,
packets are streamed through the analysis engine, where they
are inspected without collecting them first. After a stream
of packets was reduced to an interim result, it is visually
transformed. This stream-processing-like approach ensures
that the analysis is not bound to a certain magnitude of input
data size. Further, as shown in the discussed architecture,
the components in this process are designed to support novel
analysis techniques in a modular way.

A. Architecture

The architecture designed to implement the previously de-
scribed process ensures the usability and scalability require-
ments while allowing the platform’s extensibility in terms of
data, visualizations, and features.

The architecture comprises three major components: (i)
The User Layer contains the visualization subsystem. This
component is invoked after the analysis has concluded and
insights were created. This is the only interface exposed to the
user through which he/she may submit a new analysis request.
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Fig. 1: High-level Architecture of the SecGridPlatform

Doing so invokes the analysis process (ii), which involves
decoding and analyzing the packets to extract insights. The
insights are extracted by a set of miners. Designing the
architecture this way allows that only one packet is kept in
memory at any point in time. Finally, each miner produces the
aforementioned insights that are then stored using a set of (iii)
databases which mark the architecture’s boundary. However,
it is important to mention that the design allows the miners to
enrich the extracted information using external databases [5].

B. Prototype Implementation

To present a working prototype, the architectural design
described by [5] was implemented leveraging the Node.js
platform. The visualization module of the User Layer is
developed as a single Progressive Web Application (PWA) web
technology.

The actual network analysis is implemented using pure
JavaScript and a binding to the libpcap C++ library. The
protocol parser is the core of the analysis module. It exposes
an easy-to-use interface, where clients express that they wish
to be called upon with a packet according to a specific config-
uration. Said configuration is expressed for a specific protocol
(e.g., UDP or TCP) or an abstract OSI-layer (e.g., Transport-
layer or Application-layer). This is done by the clients during
the initialization phase where they load additional data sources
to enrich the extracted features (e.g., WHOIS databases or
BGP Looking Glasses).

The clients, referenced as miners, process each packet
individually, by reducing it to a dimension that embodies
the insight. Internally, miners use numerous approaches to
create insights during the extraction phase. For example, a
simple miner may collect statistics on the protocols being
used. Another miner independently extracts features for a
supervised learning algorithm. Random Forest (RF) and K-
Nearest Neighbors (k-NN) algorithms were integrated into the
post-processing phase of the prototype.

After the decoding phase, each miner finalizes the insight
creation. For example, the ML-based miner either updates the
model or classifies the attack. To validate the architecture, a

TABLE I: Examples of Miners Implemented by SecGrid [5]

Miner Target Data Outcome

Metrics
Analyzer

Attack duration,
number of packets,

IPs and ports

High-level metrics used
to fingerprint the attack

IEEE 802.1Q
Tagging Frame tags Overview over the VLAN

membership of link-layer frames
ICMP

messages ICMP headers Overview over ICMP
message types

Port
Analyzer

UDP and
TCP ports

Overview of the
most used UDP/TCP ports

Top Source
Hosts Extractor Source address Overview of the hosts

sending more traffic and requests
TCP States
Analyzer TCP flags Distribution of TCP options

Browser and
OS Analyzer

HTTP
User Agent

Browser and operating
system identification

HTTP
Analyzer

HTTP Verbs
and End-points

Overview on HTTP
verbs and paths

BGP
Analyzer BGP Messages Messages exchanged between

BGP speakers over time

ML-Feature Events emitted
by the Protocol Parser

Listens to all events emitted
by the protocol parser and process

the information required for the
attack classification ML model

set of miners were implemented to extract and enrich insights,
as shown in Table I.

(a) Automated Classifi-
cation

(b) Manual Classification

Fig. 2: Classification of a Multi-vector DDoS Attack

III. SETUP AND DEMONSTRATION

The demonstrator presents how researchers use the ML-
based classifiers of the analysis platform in a collaborative
setting. In that, there are two instances of SecGrid deployed
on distinct servers. An instance of the attack-sharing platform
DDoSDB is used as an intermediary to exchange insights.
All three services are deployed using virtual. Each machine
is assigned one CPU core and 1 GB of memory. Access to
and between the services is provided through a reverse proxy.

Two datasets were created using the CLI tools tcpdump
and nmap. Both datasets hold traffic of a TCP-SYN-based
port scan. Before the demo, dataset A is analyzed in the
SecGrid A instance and published to DDoSDB. SecGrid B
holds the unclassified dataset B and a machine-learning model
M trained on TCP-SYN-flooding and ICMP-based attacks.
Figure 4 depicts the configuration of datasets and services used
for the demonstration.

The demonstration of the process (cf. Figure 5) starts with
the second researcher automatically classifying the attack trace
B. The model was previously trained based on network traces



(a) Falsely Classified Attack Trace (b) Reclassified Trace Based on Model Refined

Fig. 3: Performance Evaluation of SecGrid for 300 PCAP Files

labeled as SYN-flooding attacks. Therefore, the attack is
falsely classified due to the similarity of the attack vectors.
This is contrasted by manually interpreting the visualizations
that highlight the number of segments received per destination
port.

Fig. 4: Overview on Services and Datasets Deployed at the
Start of the Demonstration

The presenter then characterizes the machine learning model
M using the information stored in the SecGrid system, reveal-
ing that the model is biased towards the SYN-flooding-based
attack vector. Thus, he/she navigates to the DDoSDB platform
to obtain shared attack traces of other attack vectors. There,
the demonstrator highlights how the user retrieves insights
previously created in the SecGrid A instance.

Fig. 5: Collaborative Process Between two Researchers Ex-
changing Labeled Attack Data

Finding the appropriate attack is supported by the query
language in DDoSDB and comments submitted by other
researchers. These traces A are then imported into the SecGrid
B instance. During that, the imported attack is manually clas-
sified for the supervised learning algorithm. After retraining
the local model, the existing trace B is reclassified. Although
that trace is significantly larger, it is classified instantly, high-
lighting the performance of the analysis process [5]. Finally, it
is presented how the accuracy of the classification was refined

using the collaborative features of the system by visualizing
attack trace B, as shown in Figure 3.

IV. SUMMARY AND FINDINGS

This demonstration shows how the SecGrid platform can be
applied to a collaboration process of researchers exchanging
attack traces to update an ML-based model. The presented
elements highlight the necessity of easy-to-use and efficient
feature extraction tools to enable collaborative work. The
scalability of the tool was tested using various network traces
that were up to 50 GB in size.

Due to the modular architecture proposed by SecGrid, future
research is carried out on various levels of the architecture.
Such approaches include the analysis of traffic in real-time and
data analysis techniques, such as federated learning. Finally,
novel cyberattack vectors outside the realm of DDoS attacks
will be targeted based on the presented work.
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