
Pixelizr: A Visual Demonstration
of the FERRET Framework

Fabian Marquardt
University of Bonn

marquard@cs.uni-bonn.de

Christopher Schmidt
University of Bonn

schmidtc@cs.uni-bonn.de

Lennart Haas
University of Bonn

haasl@cs.uni-bonn.de

Abstract—Tasks such as network scanning, data scraping or
other forms of data retrieval are the basis of many activities
in computer networks research. To create flexible and efficient
tools for such tasks we have created FERRET, a Python-based
framework. FERRET uses a pipeline architecture to perform
data retrieval and analysis tasks. Our demonstration provides
an artificial, yet interesting showcase of this framework using
individual pixels of an image file to make the parallel processing
of data with a FERRET-based tool visible to the viewer.

I. INTRODUCTION AND MOTIVATION

Many studies and research projects in the area of computer
networks require building automated systems to conduct net-
work scans, scrape data from a remote server, or perform other
sorts of data retrieval. In many cases, the retrieved data must
then be processed in order to gain relevant results and insights.

Hence, it should be a common goal of the computer net-
works research community to share the software and method-
ology used for such studies. In many scenarios this is already
the case and sophisticated and well-tested tools have been
developed. We can name the zmap network scanner [1] or
the scrapy crawling framework [2] as two examples of such
tools. But sometimes the functionality and concepts of these
tools might be too constraining and the flexibility for own
extensions to these tools might be limited.

On the other hand, starting new measurement tools from
scratch for every research activity comes with many dis-
advantages as well: It involves solving basic programming
tasks again and again, which leads to duplicated code and
is inherently error-prone. Obviously it requires a lot of time
and effort which is not spent working on the actual research
subject, but instead just on creating the required tools.

To strike a balance between these two approaches, we
have created the Flexible and Efficient Resource Retrieval
Toolchain (FERRET), a rather minimalist Python-based frame-
work. FERRET is used as a basis for our research activ-
ities within the Web Application Security Lab (WEASEL),
including our recent work which has been accepted for the
45th IEEE LCN [3]. FERRET is built especially to support
Internet measurement studies, but has a flexible architecture
to also support other tasks in computer networks research.
After a phase of internal development and testing we intend
to provide FERRET as open source software in the near future
so that other interested researchers can use and potentially even
contribute to the project.

List
tasks
List
tasks

Fetch
resources
Fetch
resources

Analyze
data

Analyze
data

Output
results
Output
results

Fig. 1: Concept of a pipeline-based data retrieval tool

To show the features and performance of FERRET, we in-
tend to give a live demonstration of our work at the 45th IEEE
Conference on Local Computer Networks. This demonstration
involves an artificial web server, which segments an image file
into the individual pixels and serves only one pixel per HTTP
request. Using a FERRET-based toolchain, we will show how
we can parallelize fetching all the pixels from the server to
reconstruct the original image quickly.

The remainder of this demonstration proposal is structured
as follows: In Section 2 we introduce the foundational concept
behind FERRET and give an example on how it suits our typi-
cal research tasks. Section 3 explains the technical architecture
of FERRET in more detail. Section 4 focuses on the scope of
the proposed demonstration. Finally, we conclude our work.

II. PIPELINE CONCEPT

To create an efficient and scalable system while maintaining
flexibility for every step of the retrieval and analysis process,
we propose to use a pipeline-based infrastructure. This means
that instead of creating a monolithic program which executes
all steps of the complete system, each single step is carried
out by an individual program. Each step passes its resulting
data to the next step by using message queues.

Figure 1 gives an example about how this principle can be
applied in typical computer networks research scenarios: The
first element of the pipeline is responsible for enumeration
of all tasks which should be executed. This could e.g. be a
number of different targets for a network scan, a number of
URLs which should later be fetched from a website, etc. The
information about which tasks are required could come from
an external resource such as a configuration file and is subject
to the specific implementation of this pipeline element. For



each executed task, the required information is packed into
a suitable data structure and passed on to the next pipeline
element. This could be an element which fetches some kind of
information from the network for each task, e.g. by executing
one or more HTTP requests. The resulting data is then again
passed on to the next element. In our example, this element is
responsible for analyzing and processing the fetched resources,
potentially interfacing with other external tools. For example,
it could be used to unpack the payload of the fetched resources
or to search for certain patterns in the contained payload.
Finally, the resulting data of each task is forwarded to the
last element, which would persist the gained information by
writing it to a log file, database, etc.

III. FERRET

Using the concept mentioned above, we created the FER-
RET framework. The goal was to provide a minimal set of
functions for the pipeline infrastructure so that each element of
the pipeline could be developed and maintained independently
while not having to deal with typical management tasks such
as connecting the pipeline elements or encapsulating and
decapsulating data structures every time a new element is
required. Since Python is the mainly used language in our
research activities, FERRET is also implemented in Python.

A. Architecture

The architecture of a FERRET-based toolchain is visualized
in Figure 2: Each step of the pipeline is performed by one
logical pipeline element. When one element is done processing
a certain task, it can pass this task to the next element by using
a message queue. Each element of the pipeline can interact
with several named queues so that branches or even more
complex control and data flows can be realized. In our figure
for example, element #1 has declared two queues A and B.
The data of the tasks is encoded with the Python pickle [4]
mechanism, meaning that even complex data structures can be
passed from one pipeline element to the next without prob-
lems. The next pipeline elements will then pull the available
data from the queue to continue working on the task. For
elements that require a lot of processing power, it is possible
to start several instances of one logical pipeline element, as is
visible for element #2 in our example. Data from the queue
will be distributed among all instances of one element, so that
tasks can be processed in parallel.

B. Technical details

Since FERRET aims to provide high throughput and concur-
rency, it makes heavy use of Python’s asynchronous program-
ming concepts. Especially I/O-heavy tasks can be parallelized
very efficiently when using asyncio [5]. This also means that
other Python asynchronous frameworks such as aiohttp [6] can
be integrated seamlessly into a FERRET-based toolchain.

The message queues used in FERRET are based on the Rab-
bitMQ [7] technology. Connections to the RabbitMQ server are
handled by the aio-pika module [8], which is able to provide
high throughput and low overhead when passing data from

Pipeline
Element #1

Pipeline
Element #1 Queue ATask data

Queue BTask data

Pipeline
Element #2.1

Pipeline
Element #2.1

Pipeline
Element #2.2

Pipeline
Element #2.2

Pipeline
Element #3

Pipeline
Element #3

Task data

Task data

Fig. 2: FERRET architecture

one pipeline element to the next one. By using RabbitMQ it
is also possible to create setups with FERRET-based pipeline
elements running distributed across multiple hosts to maximize
processing performance.

FERRET additionally includes a thin wrapper around the
configargparse [9] module which facilitates configuration in
various deployment scenarios. Using this wrapper, FERRET-
based pipeline elements can receive configuration data in a
unified way via several mechanisms, namely via the command
line, a configuration file or environment variables. This makes
it easy to test the elements locally during development, but
also to create cloud-based deployments using e.g. Docker or
Kubernetes.

IV. LCN DEMO

When preparing the demonstration during the difficult times
of the COVID-19 pandemic we thought about a good way
to show the potential of FERRET, while also providing an
engaging and interactive experience for the attendees of the
virtual conference.

A. Pixelizr

Eventually we developed Pixelizr, which is a showcase
project consisting of a small web server and a FERRET-
based client. The basic idea of Pixelizr is that the server
provides access to a number of stored image files, but instead
of accessing the whole file at once it only allows the client to
fetch one single pixel of the image with each HTTP request.

This means that the client, in order to download the full
image, must launch a very high number of requests to the
server’s API, parse the contained information, and finally
reassemble the original image.

Obviously, this would take a very long time when using a
traditional, sequential client. With our FERRET-based client
however the fetching process can be efficiently parallelized
and the resulting image is reassembled quickly.

B. Demo scope

During the demonstration the conference attendees will be
able to see the Pixelizr client running live via screensharing.
While the Pixelizr client receives the image contents from
the server, the rendered image is progressively updated, as
is visible in Figure 3.



Fig. 3: Screenshot of the Pixelizr client

Fig. 4: Screenshot of the Pixelizr server image submission

Viewers of the demonstration will also be able to upload
their own images via the submission site of the server (cf.
Figure 4) and see them being transmitted to the client. Viewers
will in addition get access to the Pixelizr server dashboard
(cf. Figure 5), which provides metrics and statistics about the
interaction between server and client.

We will also demonstrate the flexibility of a toolchain built
with FERRET by adding additional processing steps to the
client on the fly such as altering the colors of the image,
performing geometric translations, etc.

V. CONCLUSION

In this demonstration proposal we presented our idea of
developing typical software tools required for computer net-
works research by using a pipeline-based architecture. We in-
troduced our Python-based framework called FERRET, which

Fig. 5: Screenshot of the Pixelizr server dashboard

implements this idea and provides a foundation to create
flexible and scalable tools for research. We presented Pixelizr
as an artificial example application built with FERRET, which
aims to visualize the data collection process and provide an
interactive experience in a virtual conference scenario.

For the future we intend to publish more information about
FERRET and eventually release the framework as open source
software. We intend to continue using FERRET as a basis
for future research activities and are very interested in getting
valuable feedback from the conference attendees in order to
further improve the framework.

REFERENCES

[1] Z. Durumeric, E. Wustrow, and J. A. Halderman, “Zmap: Fast
internet-wide scanning and its security applications,” in Presented as
part of the 22nd USENIX Security Symposium (USENIX Security
13). Washington, D.C.: USENIX, 2013, pp. 605–620. [Online].
Available: https://www.usenix.org/conference/usenixsecurity13/technical-
sessions/paper/durumeric

[2] D. Kouzis-Loukas, Learning scrapy. Packt Publishing Ltd, 2016.
[3] F. Marquardt and C. Schmidt, “Don’t Stop at the Top: Using Certificate

Transparency Logs to Extend Domain Lists for Web Security Studies,”
in 2020 IEEE 45th Conference on Local Computer Networks (LCN)
(accepted), 2020.

[4] “pickle - Python object serialization,” Python Documentation, 2020.
[Online]. Available: https://docs.python.org/3/library/pickle.html

[5] “asyncio - Asynchronous I/O,” Python Documentation, 2020. [Online].
Available: https://docs.python.org/3/library/asyncio.html

[6] “aiohttp,” GitHub, 2020. [Online]. Available: https://github.com/aio-
libs/aiohttp/

[7] D. Dossot, RabbitMQ essentials. Packt Publishing Ltd, 2014.
[8] “aio-pika AMQP client,” GitHub, 2020. [Online]. Available:

https://github.com/mosquito/aio-pika
[9] “ConfigArgParse,” Python Package Index, 2020. [Online]. Available:

https://pypi.org/project/ConfigArgParse/


