Green Networks: Opportunities and Challenges

Ken Christensen
Department of Computer Science and Engineering
University of South Florida
Tampa, Florida USA 33620
christen@cse.usf.edu

The Grand Challenge

One of the most urgent challenges of the 21st century is to investigate new technologies that can enable a transition towards a more sustainable society with a reduced CO$_2$ footprint.

We need to reduce energy consumption
Here is one reason why...

Sea level in 2100 under “high emissions” scenario

From U.N. Intergovernmental Panel on Climate Change

The challenge to ICT

What role will ICT play in this grand challenge?

1) To directly reduce energy use of ICT

2) To enable energy savings in non-ICT

“Green Computing”
Green = sustainable

“Sustainability: Development that meets the needs of the present without compromising the ability of future generations to meet their own needs.”
- “Our Common Future” (Brundtland Report 1987 UN report)

One way to be “green”...

Just have less and do less
- No houses, no cars, no travel, no PCs, no Internet, etc.

North Korea at night.
A model green society?
I don’t think so...

Notion of comfortable conservation

“I mean using less energy for identical performance, measured in whatever way the consumer wishes.”
- Richard Muller (Physics for Future Presidents, 2008)

In network speak, same QoS for less energy

Product lifecycle and green

Lifecycle of “stuff” (including ICT equipment)

Focus of this talk

Production
- Cleaner mining
- Cleaner manufacturing
- Use less toxic materials
- Use less materials overall
- Use less energy overall

Use
- Use less energy
- Extend lifetime

End-of-use
- Recycle materials
- Refurbish for reuse

1 kWh = $0.10

Energy consumed by a PC*
- Production = 2000 KWh
- Life (5 yrs) = 4200 KWh

Roadmap of this talk

This talk has four major topics:

- Quantifying energy use of ICT
- Reducing energy use of PCs
- Reducing energy use of Ethernet
- Future challenges

Quantifying the energy use of ICT

How much energy does ICT use?

... the Internet is part of this.
A quick look at power and energy

Energy is power multiplied by time

- Power is Watts (W) and Energy is Watt-hours (Wh)
- A kWh is about $0.10
- So, a TWh is about $100 million

St Lucie, Florida (about 11 TWh/year)

Electricity use - big picture

Electricity use in the USA (2006, from LBNL)

All electricity ~3700 TWh
Buildings electricity ~2700 TWh
Electronics ~290 TWh
Networked ~150 TWh
Network equip ~20 TWh

$15 Billion

How much of this is wasted?
How much can be saved?
A view from the IEA

The Gadgets and Gigawatts book

- Focus is on policies for energy efficient electronics
- ICT and CE energy use is about 15% of household use
 - Growing very rapidly
- ICT and CE blur together at some point

ICT electricity use - it is growing

Electricity consumption estimates from IEA

Figure 3: Estimated electricity consumption by ICT and CE equipment in the residential sector, by region, 1990-2030

- $170 Billion (per year)

ICT electricity use - possible savings

Electricity savings estimates from IEA

Figure 4 • Estimated electricity savings from adoption of least life-cycle cost (LLCC) and best available technologies (BAT)

A view from the Climate Group

The SMART 2020 report

- Focus is on ICT’s role in reducing greenhouse gases
- A view of the world in 2020
 - Taking into account “likely” technology developments
- Supporting organizations
 - Include Cisco, Intel, HP, Sun, national telecoms, and telecom operators
Today ICT is 2% of global CO₂

From SMART 2020 report

Global ICT CO₂ footprint continued

PCs (not data centers) are major CO₂ contributor

From SMART 2020 report
“The global information and communications technology (ICT) industry accounts for approximately 2 percent of global carbon dioxide (CO₂) emissions, a figure equivalent to aviation.”
- Gartner Group, Inc. (2007)

ICT use growing faster than airline traffic
Greater impact by “fixing” ICT than airplanes

ICT electricity use – more numbers

- In the USA
 -2% of total electricity used is from PCs (EPA)
 -1.5% is from data centers (Congressional report)

- In the UK
 -About 10% from IT equipment (Public Policy, Sun UK)

- In Italy
 -Energy consumption of Telecom Italia is about 1% of total Italian energy demand (Telecom Italia)
ICT energy use - small scale

Let's add one new PC to a household

- Average US household is 10,700 kWh per year
 - Much higher than in EU

- One PC at 80 W fully on 24/7 is 700 kWh per year
 - P2P and other applications are driving 24/7 fully-on

One PC adds 6.6% to the yearly power bill

ICT energy use - the PC

The end user PC is the biggest consumer

“Desktop computing accounts for 45 percent of global carbon emissions from information technology.”
- govtech.com

“Most PC energy use in the US occurs when no one is there, and this is greater than the total energy use of all network equipment.”
- Bruce Nordman (LBNL)
Typical commercial PC energy use

\[P_{\text{on}} \gg P_{\text{sleep}} \]
\[P_{\text{sleep}} \approx P_{\text{off}} \]

Consumption is driven by on time, not by usage

From Bruce Nordman (LBNL)

The energy savings potential

To achieve a savings there must be waste

- Low utilization levels
- Power use not proportional with utilization

Our goal is energy-proportional computing
Energy-proportional computing

Power use today is a function of capacity

![Graph showing power consumption vs. utilization]

Today

What we want

Reducing energy use of PCs

Can we reduce energy used by PCs?

... this is a networking problem.
Just a few lines of code?

Microsoft could save 45 million tons of CO2 emissions with a few lines of computer code

Wed, 11/15/2006 - 2:59 pm

Here's a memo to Bill Gates and Steve Balmer:

It is estimated there are 660 million computers in use worldwide, the majority of which run some iteration of a Microsoft operating system. Generating the electricity needed to power those computers requires hundreds of power plants that produce billions of tons of CO2 emissions. Many of those machines sit idle for 12 to 15 hours per day, burning electricity, but not doing any work, because businesses habitually leave their computers running overnight.

Microsoft has already announced that they will build agressive, energy-saving technology into their next operating system, Vista. But that's not enough. These days, most computers are networked and can accept software upgrades.

Basic approaches to saving energy

Four basics approaches:

1) Slowdown
2) Sleep/stop
3) Substitute
4) Send/compute less

The four S’s

Across multiple time and distance scales

What are effects on application QoS/QoE?

What reduced functionality is essential?
Why are PCs fully on 24/7?

Reasons to not sleep a PC:
1) To reduce wake-up annoyance
2) For remote access (e.g., management, remote use)
3) To share its resources (e.g., P2P)

Wake-up annoyance is being fixed in new OSes

Induced energy use by networks

Notion of network presence

If a host is not “present” on a network it loses functionality. To be present a host must be responsive to requests and be able to maintain connections.

For example, P2P keeps TCP connections open
Network presence for IPv4 is...

To maintain network presence a host must:

- Maintain host-level reachability (respond to ARP requests)
- Maintain its IP address (if DHCP is used)
- Maintain its manageability (respond to ICMP such as ping)
- Support name resolution (e.g., for NetBIOS)
- Maintain application-level reachability (respond to TCP SYN)
- Preserve application state associated with network state
 - Maintain TCP connections
 - Respond to application-level requests and heartbeat message
- Wake-up only when its full resources are needed

Commercial offerings for PCs

Use a global (enterprise wide) controller

1) To control PC power management settings
2) “Magic Packet” to wake-up PCs for management
We need to go beyond point solutions

Seek a more general solution to network presence

1) Distributed
2) Does not require new software
3) Standard
4) Architecturally clean

Notion of a proxy to cover for a sleeping host
Addressing Network Presence

An entirely new view of connectivity*

- Connected
- Not connected

Traditional Internet

Delay Tolerant Networks

sleep

Selectively connected
(as chosen by the host)

• Assistants
• Exposing state
• Evolving state

• Host-based control
• Application primitives
• Security

Notion of a proxy - covers for a host

Network connectivity proxying goes back 10+ years
High-level view of a proxy

Functional steps:
1) Host awake; becomes idle
2) Host transfers state to proxy on going to sleep
3) Proxy responds to routine traffic for sleeping host
4) Proxy wakes up host as needed

Proxy can be in separate entity, or within host NIC

Proxy in a SmartNIC

The proxy could be integrated into a NIC
• When host is sleeping, NIC is still powered-up
• Same MAC and IP address in all cases
Some work in the lab

Proxy for ARP and wake-up on valid TCP SYN

- Early 2000s*

More recent work

Proxying for TCP connections

- Linksys WRT54G SOHO router with OpenWRT
- Maintains TCP connections using a modified SOCKS
- Listens for messages from host
 - Two messages: “Going to sleep” and “Now awake”
Even more recent work

Proxying for Gnutella P2P connections

- Uses TCP connection proxy
- Handles QUERY messages (sends QUERY-HIT)

Knows files shared by client

P2P client in sleep

Proxy can handle more than one P2P client

Most recent work

The “SIP Catcher” allowing SIP phones to sleep
From the lab of other folks

Somniloquy (Yuvraj Agarwal, UCSD)

• “Small USB-connected hardware and software plug-in system that allows a PC to remain in sleep mode while continuing to maintain network presence and run well-defined application functions”*

Proxying as a standard

Ecma TC32-TG21 - Proxing Support for Sleep Modes

Does not include proxying for applications (e.g., P2P)
Proxying in EPA Energy Star

EPA Energy Star for Computers, Version 5.0

- "Proxying refers to a computer that maintains Full Network Connectivity as defined in Section 1 of this specification. For a system to qualify under the proxying weightings above, it must meet a non-proprietary proxying standard that has been approved by the EPA and the European Union as meeting the goals of ENERGY STAR."*

The Ecma standard is key to this

Proxying in new products

Apple Snow Leopard

- “Wake on Demand. This is Apple’s name for a new networking feature that lets a Snow Leopard Mac go to sleep while a networked base station continues to broadcast Bonjour messages about the services the sleeping computer offers.”*

* From “Wake on Demand lets Snow Leopard Sleep with One Eye Open,” MacWorld, August 28, 2009

Bonjour Sleep Proxy, supports ARP, file and print serving, and SSH login initiation.
Reducing Energy use of Ethernet

Can we reduce energy used by Ethernet?

... this is Energy Efficient Ethernet.

Some observations and an idea

- **Observation #1**: Most edge links lightly utilized
 - About 1% on average

- **Observation #2**: Higher rates use more power
 - About 2 to 4 W per link for 1 Gb/s versus 100 Mb/s
 - Much more for 10 Gb/s versus 1 Gb/s

- **Idea**: Match link data rate with utilization
Edge links are lightly utilized

Focus on the last hop link
• Bursty and low utilization (trace from Portland State)

Typical bursty usage (utilization = 1.0%)

Higher rates use more power

As data rate increases, so does power use
• 10 Gb/s Ethernet is a concern

Measured/estimated AC power consumption
The general idea

Can we switch to a lower link rate (and save energy) during periods of low utilization?

Big issue is time to switch between rates

Ethernet Adaptive Link Rate (ALR)

Two parts to the problem:

1. *Mechanism* for how to switch link rate
2. *Policy* for when to change link rate

A policy based on buffer thresholds
Some early publications

We published the idea and some results

- From a 2005 journal paper and a 2006 whitepaper

Work done by other people...

- ALR was proposed to IEEE 802.3
 - A Study Group was formed
 - Mike Bennett from LBNL is the chair

- Became “Energy Efficient Ethernet”*
 - IEEE 802.3az task force

- ALR renamed to Rapid PHY Selection (RPS)

- Much discussion on switching times

- Work done on mechanisms and policies

* Logo by Glen Kramer of Teknovus, Inc. (full permission for use granted via email dated January 27, 2007)
A better idea than ALR/RPS

The low power idle approach

Low power idle is better in at least two ways:

1) Very low switching time (few microseconds)
2) Greater energy savings that ALR/RPS

IEEE 802.3az is standardizing low power idle
Now an IEEE 802.3az task force

IEEE P802.3az Energy Efficient Ethernet Task Force

- Approved IEEE P802.3az Project Authorization Request [27-Sep-07].
- Approved IEEE P802.3az 5 Cutsets [30-May-07].
- Approved IEEE P802.3az Objectives [30-May-07].
- IEEE P802.3az search.
- IEEE P802.3az public area.
- IEEE P802.3az e-mail reflector archive.
- IEEE P802.3az comments received during balloting.
- IEEE P802.3az private area (password-protected).
- IEEE P802.3az contact information.
- Subscribing and unsubscribing to the IEEE P802.3az e-mail reflector.
- IEEE 802.3 Energy Efficient Ethernet Study Group public area.
- The next meeting of this Task Force will be during the IEEE 802.3 January Interim.

Standard to be finished in 2010. Products have already been announced.

Some press on EEE
How much savings may we get?

Estimate is from Bruce Nordman (LBNL)

“… estimate that with networking devices in homes, offices, and data centers running at 1 Gb/s, switching to 100 Mb/s whenever possible could save more than US $300 million in energy costs.”
- IEEE Spectrum (May 2008)

Greater savings from 10 Gb/s down the road

EEE in EPA Energy Star

EPA Energy Star for Computer Servers, Tier 2

- "Energy Efficient Ethernet: All physical layer Ethernet in servers covered by the Computer Server specification must meet the Energy Efficient Ethernet (IEEE 802.3az) standard upon its approval by the IEEE."*

To be in computer (PC) spec later

* From ENERGY STAR® Version 1.0 Program Requirements for Computer Servers, Tier 2: PRELIMINARY
EEE in new products

Realtek Ethernet NIC

More thinking on reducing energy use

Can we shape the traffic during periods of low utilization to get predictable idle periods?

To allow controlled power-down of switches
Periodically Paused Switched Ethernet

Basic idea is to periodically send PAUSE frames
- Power down during PAUSE (link is off) interval

Packet loss is possible here

PAUSE frames (sent periodically)

During PAUSE off time
LAN switch powers down

LAN switch

PPSE animation

Packet loss is possible here

PAUSE frames (sent periodically)

During PAUSE off time
LAN switch powers down
Keynote talk – IEEE LCN 2009
Zurich, Switzerland

Packet loss is possible here

PAUSE frames (sent periodically)

During PAUSE off time LAN switch powers down

PPSE parameters

- **Key parameters**
 - $t_{off} = \text{time off (the PAUSE quanta time)}$
 - $t_{on} = \text{time on}$
 - $D = \text{duty cycle}$

$$D = \frac{t_{on}}{t_{on} + t_{off}}$$

$$t_{on} = \frac{D \cdot t_{off}}{1 - D}$$

Energy saved is roughly $(1 - D)$
FSM for simple PPSE

- **TON and TOFF are timers**

```
ON
-------
TON ← t_on, TOFF ← 0, power-on, start TON

TON = 0

TOFF ← t_off, send PAUSE, power-off, start TOFF

TON ← t_on, power-on, start TON

OFF
-------
```

FSM for adaptive PPSE

- Uses a threshold

```
ON
-------
TON ← t_on, TOFF ← 0, byteCount ← 0, power-on, start TON

(TON = 0 ) ∧ (byteCount ≤ thresh)

TOFF ← t_off, send PAUSE, power-off, start TOFF

(TON = 0 ) ∧ (byteCount > thresh)

TON ← t_on, byteCount ← 0 , start TON

OFF
-------
```

Adaptive
Does PPSE work?

- We have emulated PPC in a test bed
 - Test bed looks sort of like the previous figure
 - Use a PC to send PAUSE packets through a repeater
 - All links were 100 Mb/s

- We have developed a simulation model
 - For studying PPSE policies and queueing behavior

- We are currently building analytical models
 - Of the PPSE controlled queues

(Emulated) PPSE evaluation

Experimented with streaming video

- Used a 50% duty cycle on 100 Mb/s link
 - \(t_{\text{off}} = 50, 100, \text{and } 300 \text{ milliseconds} \)
 - \(t_{\text{on}} = t_{\text{off}} \)

Artifact (at \(t_{\text{off}} = 300 \text{ ms} \))
Future challenges

Where can we go from here?

... energy savings of and by ICT.

Challenges in green networks

Challenges in five areas

1) General (or overall)
2) Network equipment
3) Network hosts
4) Data centers
5) Distributed applications

Goal is low power use at low utilization
Challenges in green networks continued

General

• Metrics
 - How do we measure energy-performance trade-offs?

• Models
 - How do we model energy-performance trade-offs?

• Exposing power and usage state
 - Need to be able to remotely determine power/use state

• Architectures for selective connectivity
 - Need mechanisms/protocols for selective connectivity
 ▪ Includes notions of proxying

Network equipment

• Green routers and switches
 - Re-design routers and switches for energy efficiency

• Data caching for energy efficiency
 - Caching to reduce load network and servers

• Traffic shaping for energy efficiency
 - Shaping traffic for short-term shutdown

• Traffic engineering for energy efficiency
 - Routing to consolidate routes for long-term shutdown
Challenges in green networks

Network hosts

- Discovery of devices, capabilities, and services
 - Need to be able to discover low-power substitutes

Data center specific

- High bandwidth / low latency for dynamic virtualization
 - Useful for server shutdown

- Move computing work to where power is cheapest
 - “Follow the moon” for data center activity

Distributed applications

- P2P, multiplayer games, and virtual worlds
 - Need to address these large and growing energy consumers

- Webcams and sensors everywhere
 - Need to address these large and growing energy consumers
Using ICT to reduce CO₂ footprint

Ideas from SMART 2020

- **Smart motor systems**
 - Optimized industrial systems

- **Smart logistics**
 - More efficient transport

- **Smart buildings**
 - Better management and automation

- **Smart grids**
 - Reduce distribution losses

ICT as an enabler of CO₂ reduction

ICT can enable savings

Fig. 1 ICT impact: The global footprint and the enabling effect
GrCO₂e

Alberto’s keynote yesterday!

Savings from ICT is 5x ICT impact

<table>
<thead>
<tr>
<th>Year</th>
<th>2002</th>
<th>2020 BAU</th>
<th>2020 with abatements</th>
</tr>
</thead>
<tbody>
<tr>
<td>GrCO₂e</td>
<td>-40.0</td>
<td>51.9</td>
<td>30</td>
</tr>
<tr>
<td>ICT 0.5</td>
<td>ICT 1.4</td>
<td>ICT 1.4</td>
<td></td>
</tr>
<tr>
<td>Abatements</td>
<td>-14.1</td>
<td>-7.8</td>
<td></td>
</tr>
</tbody>
</table>

From SMART 2020 report
ICT is dematerializing the economy

Our economy is increasingly about...

Moving bits and not atoms

- This is how most of us now earn a living
- Made possible by networks
- Continuing trend may help us be *comfortably green*

Conclusions

- ICT has large and growing energy use
- Majority of energy use is and will be in hosts
- Growing energy use in broadband networks
- Least growth in energy use of data centers
- Proxying is one way to reduce host energy use
- EEE to reduce networks energy use
- Moving bits and not atoms = less CO₂
Welcome to keynote for LCN 2029...

Will this be the conference of the future?

No people, just robots and video sent back home.

I hope not!

See y'all next year in Colorado, USA! 😊

Any questions?
Ken Christensen
http://www.csee.usf.edu/~christen/energy/main.html

The Energy Efficient Internet Project

Many collaborations with Bruce Nordman at LBNL