**Distributed Search Revisited:** *Resolving the Conflict of Efficiency & Flexibility* 

#### Raouf Boutaba

(with Reaz Ahmed)

Cheriton School of Computer Science University of Waterloo

http://bcr2.uwaterloo.ca/~rboutaba



IEEE ICN October 16, 2008

- Advertisement and querying in LSDS
- Existing search mechanisms
- The DPM framework
- O DPMS
- O Plexus
- Experimental evaluation
- Conclusion

#### Large Scale Distributed Systems

#### Properties

• Transient populations of *autonomous* nodes

• Content dynamism

• *Heterogeneity* in nodes' capabilities

Representative domains
 P2P content sharing
 Service discovery
 Distributed XML databases

- Search requirements
   O Efficiency
  - Flexibility
  - O Robustness

Completeness
Autonomy
Anonymity

## Content-sharing P2P Systems



#### **Advertisement**

The Lord of the Rings - The Two Towers - 2002 (Extended Edition) DVDrip.AVI

#### Query

Lord of the Ring Two Tower

#### Service Discovery



#### <u>Advertisement</u>

Service-type = service:print Scope-list = staff, grad Location = DC3335 Color = true Language = PS Paper-size = legal, A4, B5

#### Query

Service-type = service:print

Scope-list = grad

Paper-size = A4

Resource and Service Discovery in Large Scale Distributed Systems. IEEE Communications Surveys & Tutorials, IEEE Press, Vol. 9 (4), pp. 2-30, Dec. 2007.

#### P2P Databases



#### Advertisement

<



• Query is based on partial information about the Advertisement.

 Query is a "subset" of an Advertisement it should match against

- Advertisement and querying in LSDS
- Existing search mechanisms
- The DPM framework
- O DPMS
- O Plexus
- Experimental evaluation
- O Conclusion

# **Components of a Search Mechanism**



A Survey of Distributed Search Techniques in Large Scale Distributed Systems. IEEE Surveys & Tutorials, IEEE Press, cdt. accepted 2007.

## **Components of a Search Mechanism**



# **Components of a Search Mechanism**



• E.g., SSDS, NSS, DPMS, PLR

# Examples

|                  | GIA                                 | pSearch                | Squid               | Twine &<br>PWSD        | NSS                          | SSDS                         |
|------------------|-------------------------------------|------------------------|---------------------|------------------------|------------------------------|------------------------------|
| Query            | Keyword                             | Full-text/<br>semantic | Prefix-<br>match    | Subtree /<br>path: XML | Keyword                      | Subset of<br>AV-list:<br>XML |
| Trans-<br>lation | Flat                                | LSI                    | Hilbert<br>SFC      | Stranding              | Bloom-<br>filter             | Bloom-<br>filter             |
| Routing          | R.Walk+<br>Cap. bias+<br>1-hop idx. | CAN                    | Chord               | Chord                  | Controlled<br>flooding       | Global<br>Hierarchy          |
|                  | PeerDB                              | XP2P                   | L. Galanis          | RDFPeers               | PLR                          | Humbolt                      |
| Query            | SQL                                 | XPath<br>(absolute)    | XPath<br>(relative) | Partial RDF<br>triple  | Keyword                      | SPARQL/<br>RDF               |
| Trans-<br>lation | Synonym                             | Finger-<br>print       | XML elem.<br>Hash   | RDF elem.<br>hash      | Attenuat.<br>Bloom<br>filter | URI-hash<br>+ flat           |
| Routing          | TTL-<br>flooding                    | Chord                  | Chord               | Chord                  | Hint-<br>based               | DHT+ Ctrl.<br>flooding       |

#### **Research Trends**



(Signature routing) Pattern as Address Pattern as Index

- Advertisement and querying in LSDS
- Existing search mechanisms
- The DPM framework
- O DPMS
- O Plexus
- Experimental evaluation
- O Conclusion

# Distributed Pattern Matching (DPM)



Distributed Pattern Matching for P2P Systems. In Proc. IEEE/IFIP Symposium on Network Operations and Management (NOMS), Vancouver (Canada), April 2006.



# The Big Picture



# Solving the DPM Problem

Challenge: PM requires linear time algorithm

#### Solutions:

- O DPMS:
  - Signature routing
  - Hierarchical indexing with index aggregation
  - Goal: Find few matches in a few hops

#### O Plexus:

- Address Routing
- Index clustering with Error Correcting Codes
- Goal: Find all in reasonable number of hops

- Advertisement and querying in LSDS
- Existing search mechanisms
- The DPM framework
- O DPMS
- O Plexus
- Experimental evaluation
- O Conclusion

# Pattern Distribution



Distributed Pattern Matching: A Key to Flexible and Efficient P2P Search. IEEE Journal on Selected Areas in Communications (JSAC), Vol. 25 (1), pp. 73-83, 2007.

# Query Routing

Peer A is looking for a pattern, say advertised by Z



# Query Routing

#### Efficiency?

Peer A is looking for a pattern, say advertised by Jumber of peers in a group at height, say H, where,



• Indexing overhead

- Advertisement and querying in LSDS
- Existing search mechanisms
- The DPM framework
- O DPMS
- O Plexus
- Experimental evaluation

#### O Conclusion

# Plexus: Index Clustering

C = set of cluster heads



#### Error Correcting Codes

- Linear Covering code
- $\boldsymbol{\cdot} \; \textbf{Cluster head} \Leftrightarrow \textit{Codeword}$
- Generator matrix based routing

 $Q \subseteq P \Rightarrow qSet(Q) \cap advSet(P) \neq \phi$ 

Plexus: A Scalable Peer-to-peer Protocol Enabling Efficient Subset Search. IEEE Transactions on Networking (TON), IEEE Press, To appear February 2009.

#### Linear Binary Code

- □ C = <n, k, d> linear binary code
  - n: number of bits in a codeword
  - **k**: dimension  $\rightarrow 2^k$  codewords in code
  - d: minimum distance between any pair of codewords
  - e.g., G<sub>24</sub>=<24, 12, 8>
- Generator Matrix G,

$$G = \begin{bmatrix} g_1 \\ g_2 \\ \cdots \\ g_k \end{bmatrix} = \begin{bmatrix} g_{11} & g_{12} & \cdots & \cdots & g_{1n} \\ g_{21} & g_{22} & \cdots & \cdots & g_{2n} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ g_{k1} & g_{k2} & \cdots & \cdots & g_{kn} \end{bmatrix}$$

2<sup>k</sup> codewords can be formed by applying XOR to any combination of these k rows.

## Plexus: Routing Table

- In a complete network each peer is responsible for a codeword
- Peer with codeword X maintains k links as follows:
  - Link  $X_i = X \oplus g_i$   $1 \le i \le k$
- Optionally X can link to:
  - $X_{k+1} = X \oplus g_1 \oplus g_2 \oplus ... \oplus g_k$
  - Replicate to  $X_{k+1}$

#### Plexus: Routing

$$X, Y \in C \Longrightarrow Y = X \oplus g_{i_1} \oplus g_{i_2} \oplus \cdots \oplus g_{i_n}$$

Example: Route from X to Y where,



### Plexus: Codeword Assignment

Mapping codewords to peers in networks with less than 2<sup>k</sup> peers.



### Plexus: Multiple subnets



- Advertisement and querying in LSDS
- Existing search mechanisms
- The DPM framework
- O DPMS
- O Plexus
- Experimental evaluation
- O Conclusion

# Experimental Setup

#### Search systems

- Flooding
  - Uniform replication with avg. 120
  - $\cdot$  TTL = 4
- Random walk
  - Uniform replication with avg. 120
  - Walker = 15
- **O** DPMS
  - Recursive replication factor = 2
  - Branching factor = 4-6

#### • Plexus

• No. of subnets = 7

#### • DHT/Chord

• Replica per key = 4



### **Routing Efficiency**



Advertisement traffic

Search traffic At % n-gram in query = 35%

## Search Completeness



Search Completeness Network size ≈ 20K



Search completeness At % n-gram in query = 35%

#### Fault Resilience



- Advertisement and querying in LSDS
- Existing search mechanisms
- The DPM framework
- O DPMS
- O Plexus
- Experimental evaluation
- Conclusions

#### Conclusions

- We have formulated DPM, a new problem, which can be used to model search in a number of LSDS applications
  - We have shown how P2P search, Service discovery systems and P2P databases can be mapped to DPM.
- We have provided two solutions, DPMS and Plexus, which solve the DPM problem
  - O Plexus surpasses all known search techniques in both structured and unstructured LSDSs.
  - We have demonstrated that it is possible to reconcile flexibility and efficiency.
- We believe that DPM has great potential in many existing and emerging applications
  - Examples include molecular databases, fingerprinting, phonetic search, sound alike search, etc.